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Abstract— This research presents a LASER locking scheme that provides considerably much higher stabilization of LASER frequency in 
real-time environment. The scheme is implemented using LabVIEW Software in Real-time Operating System (RTOS). The scheme allows 
stability of the LASERs within the line-width of the respective transitions. Using this scheme, the Extended Cavity Diode LASERs (ECDL) 
are locked to a saturated absorption curve of a reference LASER automatically. The system can remain locked for several hours. The 
scheme also provides a human friendly interface and allows access to tune the LASER frequencies. 

Index Terms— Data, Frequency Drift, Frequency Locking, Imaging System, LabVIEW, LASER, Real-Time Operating System (RTOS) 
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1 INTRODUCTION 
RAPPING single atom is described as one of the most 
demanding experiments in atomic physics. Trapped and 
LASER-cooled ions are considered as most promising 

agents for the realization of an ion trap quantum computer 
[1],[2]. Ion trapping experiments require a number of LASERs 
operating at the required frequency to perform cooling and 
trapping of ions. The frequency of the cooling LASERs must 
be tuned very accurately relative to the transition frequencies 
of the trapped ions. The LASERs are frequency stabilized 
within the line-width of the respective transitions for efficient 
cooling and re-pumping requirement. In order to obtain 
flexibility and interactivity, the computer software-based 
graphical environment is developed using LabVIEW. The 
LabVIEW environment provides a robust control to the 
hardware used in frequency stabilization setups [3],[4],[5]. To 
ensure the deterministic behavior, the computer program is 
implemented on the Real-Time Operating System (RTOS) 
provided by National Instruments i.e. NI-RTOS. The key 
difference between RTOS and general computing operating 
systems (such as Windows, Linux, UNIX etc.) is the 
deterministic timing behavior which is the feature of RTOS. 
Deterministic timing means that the operating system 
consumes only known and expected amount of time. The 
RTOS operates in a controlled environment in which 
computer memory and processing power is limited. The RTOS 
controls the tasks execution on application software and 
provide their services within a strict time window to their 
users by running the tasks in a very timely and responsive 
way. The NI-RTOS installed computer (Target) used in our lab 
communicates with the personal computer (Host) via Ethernet 
network. The locking program runs on the target PC and its 
display and controls are monitored by using the host PC 
which runs with a Windows Operating System (Win/OS). 

 
2  EXPERIMENTAL MODEL 
A schematic diagram of our LASER frequency stabilisation 
setup is shown in Figure-1. There are three major parts of the 
scheme: (1) the stabilized LASER system, (2) the optical cavity 
and (3) computer controlled feedback based on synchronized 
scanning of the piezo-electric transducer (PZT) combined with 
data acquisition. Figure-1 also depict the LASER locking-
scheme and alignment into the trap. The computer controlled 
program in LabVIEW real-time module simultaneously scans 
the cavities and generates error signal to control the drift in 
the LASER frequencies via feedback system. 

2.1 LASER Setup 
To ionise Yb (Ytterbium) and excite its internal energy states 
in an ion trap experiment, 369-nm, 399-nm, 638-nm and  
935-nm coherent light sources are required. The External 
Cavity Diode LASERs (ECDL) are in common use in ion 
trapping and LASER cooling experiments. This flexibility of 
the ECDL makes them a primary choice for LASER systems 
for the experiments. ECDL frequency and output power can 
be varied by varying the current and the temperature of the 
diode along with the grating angle. To provide the first stage 
of the photo-ionization process for Yb atom, light at 399-nm is 
used to resonantly excite it from the 1S0 --- 1P1 transition [6]. 
For the second stage, it is achieved by using light at 369-nm. It 
also cools the trapped ion immediately after ionization by 
exciting its 2S½ --- 2P½ dipole transition. The 369-nm light is 
generated by frequency doubling of light at 739-nm using a 
nonlinear crystal Lithium Triborate (LBO). The 739-nm light is 
generated by built-in ECDL setup. Light at 935-nm is used as a 
re-pump source to drive the 2D5/2 --- 3D[3/2]1/2 transition to 
prevent the ion being lost to the dark state 2D5/2. The 
frequencies of the LASER diodes are strongly sensitive to 
temperature change, electric current and cavity length 
(acoustic oscillations). To avoid any drift in cooling LASER 
frequencies, it is necessary to lock the LASERs with a known 
frequency reference during the trapping and cooling 
experiments. Various electrical and optical methods have been 
experimented to improve the frequency stability of LASER 
diodes. The locking scheme in our lab is done by locking 739-
nm and 935-nm LASERs to a passively stable reference cavity 
using an RF (Pound-Drever-Hall) lock.  
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Fig-1: LASER locking-scheme and alignment into the trap. The computer control program in LabVIEW Real-Time module simultaneously scans the 
cavities and generates error signal to control the drift in the LASER frequencies. 

2.2 Reference LASER 
When the absolute LASER frequency stabilization is required, 
it is normal to lock the frequency of the LASER to an atomic 
standard using saturated absorption spectroscopy. Those 
frequency references which utilise the natural atomic 
transition lines, are in common use in LASER locking schemes. 
In order to keep the reference LASER locked with known 
standard wavelength, in our lab, Rb D2 transition line with 
Γ~2π6 MHz is used as a frequency reference.  

In order to provide a frequency reference, a 780-nm ECD 
LASER setup is constructed in the lab. The frequency of the 
780-nm LASER is locked to one of the hyperfine atomic 
transitions of Rb. To access the hyperfine transition of Rb, a 
saturation absorption spectroscopy setup is constructed in lab 
[7],[8],[9].  

 

Two counter-propagating overlapping pump and probe 
LASER beams, with 1.3 mW and 0.1 mW power respectively 
are crossed through a Rb cell.  Figure 2(a) shows the saturation 
peaks with a Doppler background spectrum of Rb87and  
Rb85 isotopes. The corresponding transitions are shown in 
Figure 2(b). The saturation peaks are obtained by scanning the 
LASER frequency around the resonance transition. By 
electronically differentiating the saturation peak signal using a 
Lock-in amplifier, a sharp zero crossing point at FWHM (full 
width at half-maximum) of the resonance corresponding to 
zero of the gradient is obtained. The feedback signal to 
stabilize the LASER around this zero crossing is then provided 
to the LASER controller using proportional integration (PI) 
controller. This locking scheme provides a stabilized 
frequency reference with an accuracy of less than 1MHz. This 
LASER is then used to lock the cooling LASERs by the transfer 
cavity lock method.  
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Fig-2(a): The saturation absorption spectroscopy signal obtained by 
scanning the LASER over the Rb87 and Rb85 

2.3 Transfer Cavity Lock 
There are two separate Fabry-Perot confocal cavities being 
used. A combined beam of stabilized 780-nm and 739-nm  
LASERs using a polarising beam splitter is aligned into one 
Fabry-Perot confocal cavity and 935-nm is combined with the 
780-nm in the other cavity. In order to achieve the resonant 
peaks, the cavity is scanned at the speed of 50 to 70 Hz by 
applying a ramp voltage function to the piezo at the cavity. 
The output beam from the cavity is then split into its 
constituents using a second polarizing beam splitter and the 
intensities of two beams measured using photodiodes. The 
signal from the photodiodes is then read in computer 
controlled electronic analog to digital convertor (ADC) cards. 

2.4 Wavemeter Lock 
The absolute error on the wavemeter used in the lab is 
specified as ±60 MHz and its relative uncertainty is ±10 MHz. 
Therefore, the wavemeter can also be used to lock those 
LASERs where this level of accuracy is acceptable. Hence, the 
399-nm ionisation LASER and 638-nm re-pumping LASERs 
are locked directly to the wavemeter. To achieve this, a  
LabVIEW program running on the wavemeter computer 
sends the frequency/wavelength values of the LASERs which 
has to be locked, to the RTOS computer, via the COM-Ports of 
both computers.  

Fig-3: The distance between the two reference LASERs (780-nm) peaks is 
denoted as a and the separation between unstable LASER (739-nm or 
935-nm) peak and the reference LASER peak is denoted as b.  

3. SYNCHRONIZED LASER SCANNING AND FEEDBACK 
SYSTEM 

In order to provide long-term stabilization to the LASERs used 
in our lab, a computer-based multifunctional data acquisition 
system scans the LASER cavities and synchronously reads the 
cavities spectra of the multiple LASERs. By comparing peak 
positions relative to the stabilized Rb-locked 780-nm LASER, 
the computer generates the error signal in real-time to control 
the long-term drift of the LASERs. The voltage signals from 
the photodiodes are read through the National Instruments 
(NI) Data Acquisition Card PCI-6143 S-series DAQ shown in 
Figure-4, which we have configured accordingly keeping in 
view electronic signal parameters. 
 

Fig-4: National Instruments (NI) Data Acquisition Card PCI-6143 S-series 
DAQ, Input Read Card 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig-2(b): Hyperfine structure of Rb87 D2 line 
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Fig-5: The Block Flow diagram of the Real-Time LASER locking program, 
which controls the cavity scan, data acquisition and LASERS parameters 

 
The computer program written in the LabVIEW Real-Time 

module continuously displays the spectra of the fringes for all 
the LASERs which are sent through the cavities. The spectra 
fringes are obtained by scanning the lengths of the cavities 
with PZT. After each scan, the program calculates the fringe 
position of the reference LASER (Rb-locked 780-nm LASER) 
and the other LASERs and then corrects the drift in the LASER 
frequencies by adjusting the voltages that are sent to the 
controller of the grating of the LASERs. The error signals are 
generated by keeping the ratio of the positions of the spectra 
peaks of the LASERs a/b as constant value. The same 
technique is used in [10]. The position of the peaks is 
illustrated in Figure-3. The error signal is then translated into a 
voltage signal and generated at the analog output card  
(NI PCI-6722) for feedback to the LASER controllers. 

The LASER locking program written in LabVIEW is 
illustrated in the block diagram shown in Figure-5. The 

Software interface front panel of the LabVIEW program 
provides control boxes where the required wavelength can be 
typed-in. The program computes an error signal by comparing 
both the required and measured values. The calculated 
feedback is then sent to the LASER controller via the output 
card (PCI-6722). 

4. CONCLUSION 
We have successfully demonstrated a robust scheme for  
LASER frequency locking based on the real-time LabVIEW 
module implemented using commercially available NI-cards. 
The scheme provides a fast control over the LASER system. By 
using this locking-scheme the frequency of 739-nm and  
935-nm LASERs are locked down to ~ 20 MHz. The 399-nm 
ionisation LASER and 638-nm re-pumping LASER are locked 
down to 60MHz. Furthermore, the scheme provides an easy 
access to tune the LASERs ranging in several hundred 
megahertz. 
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